CSCI 7000 Fall 2023: Inclusion-Exclusion

Joshua A. Grochow

Released: October 10, 2023
Due: Monday Oct 16, 2023

1. Generatingfunctionology Chapter 4 Exercise 9 (p. 159), reproduced verbatim here:

Let G be a graph of n vertices, and let positive integers x, λ be given. Let $P(\lambda ; x ; G)$ denote the number of ways of assigning one of λ given colors to each of the vertices of G in such a way that exactly x edges of G have both endpoints of the same color.

Formulate the question of determining P as a sieve [inclusionexclusion] problem with a suitable set of objects and properties. Find a formula for $P(\lambda ; x ; G)$, and observe that it is a polynomial in the two variables λ and x. The chromatic polynomial of G is $P(\lambda ; 0 ; G)$.
2. Given non-negative integers k, n, d, find the number of non-negative integer solutions to the equation

$$
x_{1}+x_{2}+\cdots+x_{k}=n
$$

such that all x_{i} satisfy $0 \leq x_{i} \leq d$.
3. (Stanley, Enumerative Combinatorics, Volume I, second edition, Chapter 2, Exercise 14). Let $A_{k}(n)$ denote the number of collections S of k subsets of $\{1, \ldots, n\}$ such that no element of S is a subset of another element of S. Show that $A_{1}(n)=2^{n}$ and $A_{2}(n)=(1 / 2)\left(4^{n}-2 \cdot 3^{n}+2^{n}\right)$. Try to compute $A_{k}(n)$ for $k=3,4$. Can you see the pattern? See for how large a k can you get a general formula (as a function of n).

Resources

- van Lint \& Wilson Chapter 10
- Generatingfunctionology Section 4.2 for a generating function view of inclusion-exclusion
- Generatingfunctionology p. 113 for average number of fixed points of a permutation via inclusion-exclusion
- Enumerative Combinatorics Chapter 2

